
Solaris Kernel Tuning for Security
by By Ido Dubrawsky (idubraws@cisco.com)
last updated Dec. 20, 2000

Introduction

The Solaris kernel provides a great deal of user-configurable control over the system
TCP/IP stack. Everything from cache table lifetimes to the number of TCP connections
that the system can address are controllable. However, without understanding the
underlying need for tuning these kernel parameters many system administrators
choose to ignore them - thereby leaving their systems vulnerable to a resourceful
assailant.

Solaris Kernel Tools

The only tool available to Solaris system administrators for tuning kernel parameters is
ndd. Currently, ndd only supports the TCP/IP kernel drivers. It can be used to both
show and set the values of parameters for these drivers.

Solaris Kernel Parameters

In general to show a particular parameter the command format is:

 # ndd /dev/<driver> <parameter>
where <driver> is one of the following: ARP, IP, TCP, and UDP. To view all
parameters for a particular driver the command is:

 # ndd /dev/<driver> \?
To set a kernel parameter using ndd, the format of the command is:
 # ndd -set /dev/<driver> <parameter> <value>
Unfortunately, changes to the Solaris kernel parameter values using ndd are not
permanent. The values for these parameters return to default upon system reboot. To
make these changes more permanent a system administrator needs to put these
changes into a shell script that is run at system boot (one possible location would be
/etc/init.d/inetinit or in a separate shell script). One of the primary problems with setting
these parameters into a shell script is that the parameters are implementation-specific
and may change from one Solaris release to another.
ARP
ARP (Address Resolution Protocol) is used to dynamically map layer-3 network
addresses to data-link addresses. When one system wants to communicate with
another system on a network it first sends an ARP packet to the broadcast address,
FF:FF:FF:FF:FF:FF. The packet asks the simple question: "who has network address
A?...tell network address B". Since all hosts on a network receive these broadcast
packets, system A receives the ARP request and sends back a response. The
originating host then uses the responses to its ARP broadcasts to build a table, or
cache, mapping the 32-bit IP addresses to Layer-2 hardware, or MAC, addresses. A
second table is maintained by the network layer. This table is built from information
provided by the data-link layer and contains network-routing information for active
connections. The network layer requests MAC addresses from the data-link layer and
inserts these addresses into a network routing table. Network routing entries expire
after 20 minutes.
When a network host prepares to communicate with another the IP layer checks the
ARP cache first. If an entry for the network peer does not exist in the cache, an ARP
request is broadcasted. ARP cache entries expire after five minutes.

The ARP cache is susceptible to two types of attacks: ARP cache poisoning and ARP
spoofing. ARP cache poisoning involves "inserting" either a non-existent ARP address
or an incorrect ARP address into a system's ARP cache. This results in a denial of
service since the target system will send packets to the peer's IP address but the MAC
address will be incorrect.
ARP spoofing can result in system compromise. Just like IP spoofing, ARP spoofing
relies on, first, disabling a host on the network so that it cannot reply to any ARP
request broadcasts. Once that is done the attacker can configure the disabled host's IP
address on the attacking host. When the victim host tries to communicate with the
disabled host the attacker's system responds to any ARP request broadcasts, thereby
inserting its MAC address in the victim's ARP cache. Communication between the two
hosts can then proceed normally.
It is very difficult to defend against ARP attacks. One defence against ARP attacks is to
reduce the lifetime of cache entries. The cache lifetime is determined by the kernel
parameter arp_cleanup_interval. The IP routing table entry lifetime is controlled by the
kernel parameter ip_ire_flush_interval
 # ndd -set /dev/arp arp_cleanup_interval <time>
 # ndd -set /dev/ip ip_ire_flush_interval <time>
where <time> is in milliseconds. Reducing the ARP cache timeout interval and the IP-
routing table timeout interval will slow down an attacker but not stop them.
Another option could be to create static ARP addresses for some systems. Static ARP
cache entries are permanent and therefore do not expire. These entries can be deleted
using the command arp -d. A third option would be to disable ARP processing on the
system interface(s) altogether and add static ARP entries.
IP Parameters
The Solaris kernel also provides for control of various characteristics of the IP network
protocol. This functionality is provided through several parameters:
 ip_forwarding
 ip_strict_dst_multihoming
 ip_forward_directed_broadcasts
 ip_forward_src_routed
IP forwarding involves routing IP packets between two interfaces on the same system.
Typically this is a job that a router performs, however, a Solaris system can perform
this task as well. By default a system installed with Solaris will perform IP forwarding.
This can be disabled by setting the kernel parameter ip_forwarding to 0:
 # ndd -set /dev/ip ip_forwarding 0
Another avenue of attack would be for an intruder to create packets that are destined
onnly for networks that are connected to a multihomed server that does not forward IP
packets. By setting the parameter ip_strict_dst_multihoming to 0 the system drops any
packets that appear to originate from a network attached to another interface:
 # ndd -set /dev/ip ip_strict_dst_multihoming 0
Directed broadcasts are packets that are sent from one system on a foreign network to
all systems on another network. Directed broadcasts are the basis for the "smurf"
attack where forged ICMP packets are sent from a host to the broadcast address of a
remote network. The source address in the ICMP packets is forged to contain the
address of the victim host. The systems on the remote network receive the ICMP
packet and then reply back to the victim host thereby flooding the host with traffic. Any
Solaris system that has IP forwarding enabled will forward directed broadcasts as well.
To disable the forwarding of directed broadcasts set ip_forward_directed_broadcasts to
0:
 # ndd -set /dev/ip ip_forward_directed_broadcasts 0
When packets travel between one host and another on a network their path is
determined by either dedicated routers or hosts providing routing services. However, IP
has the ability to specify the route between the source and destination. This ability
comes in one of two forms: strict and loose. With a strict source route, the sender
specifies the address of every intermediate hop between it and the destination. With

loose source routing the sender only specifies some of the intermediate hops leaving
routers free to choose any path between the two systems. Source routing may be used
to bypass security measures in the network topology. There is no reason to see
source-routed packets in a network. Any host that does allow IP-forwarding should
silently drop source-routed packets by setting the Solaris kernel parameter
ip_forward_src_routed to 0:
 # ndd -set /dev/ip ip_forward_src_routed 0
TCP Parameters
In September 1996, Phrack Magazine published an article titled "Project Neptune".
This article described a type denial of service attack known as a SYN flood. The goal of
this attack is not necessarily to break into a system but to render the system unusable
from the perspective of the internet or intranet. The attack exploits the basic way a TCP
connection works. When a system attempts to connect to a server using TCP the
sender a TCP/IP packet to the destination with the SYN bit set. This SYN packet is
then acknowledged by the destination with a packet with both the SYN and ACK bits
set in the TCP header. The sender then replies to SYN-ACK packet from the
destination by sending its an ACK packet back. This "3-way" handshake looks
something like:
 Sender(client) Destination(server)

 SYN ------------------------------->
 (Sequence #: X)
 <------------------------------ SYN-ACK
 (Sequence #: X+1, Sequence
#: Y)
 ACK ------------------------------->
 (Sequence #: Y+1)
The abuse can occur when the destination host has responded to the sender with a
SYN-ACK but does not receive an ACK back from the sending host. This then leaves
the destination host connection in a "half-open" state. The source host then opens a
new TCP connection with the destination host and repeats the process. This process
continues until all possible TCP socket connections that the destination host can
handle are in the "half-open" state. Once this happens, no further TCP SYN packets
can be processed by the target until the "half-open" connections are removed from the
TCP connection queue.
One way to determine if a Solaris system is under a TCP SYN attack would be to
monitor the number of TCP connections in a SYN_RCVD state:
 # netstat -an -f inet | grep SYN_RCVD | wc -l
This value can be compared to a baseline value taken when the machine is running
under normal circumstances. Solaris provides another way to determine if a machine is
under a TCP SYN attack. By running the command:
 # netstat -s -P tcp
and inspecting the values of the parameters tcpTimRetransDrop and tcpListenDrop a
TCP SYN attack can be identified. The parameter tcpTimRetransDrop shows the
number of aborts since boot time due to abort time expirations. This value includes
both the SYN requests as well as established TCP connections.
The parameter tcpListenDrop shows the number of SYN requests that have been
refused since the system was booted because of a TCP queue backlog. There is a
high probability that the system is under a TCP SYN attack if the tcpListenDrop value
increases quickly along with the value of tcpTimRetransDrop.
To offset such an attack the administrator must do two things:

a) shorten the value of the abort timer, and
b) lengthen the TCP connection queue.

To shorten the abort timer the kernel parameter: tcp_ip_abort_cinterval can be used.

The value for this parameter is given in milliseconds. By default the abort timer interval
is 180 seconds. To set the abort time to 60 seconds the system administrator can use
the command:
 # ndd -set /dev/tcp tcp_ip_abort_cinterval 60000
The kernel parameter tcp_conn_req_max_q0 controls the queue size for unestablished
TCP connections in Solaris 2.6 and above (or in Solaris 2.5.1 w ith patch 103581-11).
The default value for tcp_conn_req_max_q0 is 1024. To increase the queue size the
following command can be used:
 # ndd -set /dev/tcp tcp_conn_req_max_q0 2048
Another type of SYN attack involves exhausting the TCP established connection
queue. This attack is not as desirable as the TCP SYN attack mentioned above
because of the fact that the connection can be traced back to its source, however, it
still presents a problem. Solaris 2.6 and above (as well as Solaris 2.5.1 with patch
103582-11) provide control over the size of the established TCP connection queue.
This control is provided by the kernel parameter tcp_conn_req_max_q. By default it is
set at 128. To increase the established TCP connection queue, the command is:
 # ndd -set /dev/tcp tcp_conn_req_max_q <size>
where <size> is the total number of active, established, TCP connections allowed to
the host. Increasing either the TCP queue for unestablished connections or the TCP
queue for established connections will require more memory. Without sufficient
memory the server's performance will be affected. Also, while this provides some
measure of relief against TCP SYN attacks and TCP established connection
exhaustion attacks these types of attacks depend on which side has more resources. If
the attacker can produce more TCP connections (whether "half-open" or established)
than the server can possibly handle this denial of service will succeed.
Conclusion
The Solaris kernel has many configurable parameters that are security related. These
parameters can be adjusted to strengthen the security posture of a system. The
parameters cover such things as ARP timeouts, IP forwarding of packets, IP source
routing of packets, TCP connection queue sizes, and many other factors governing
network connections. By tuning the kernel properly a system administrator can even
prevent OS fingerprinting of a Solaris system as provided by such tools as queso and
nmap.

Relevant Links

Solaris[tm] Operating Environment Network Settings for Security
Alex Noordergraf and Keith Watson

Solaris inetd.conf Pt. 1
Hal Flynn

Solaris inetd.conf Pt. 2
Hal Flynn

